Net

Practice-Unit 1

1. Required number $=1,00,000-28,594=71,406$
2. Successor of $39,999=40,000$
3. Predecessor of $5000=4999$
4. Number of required boxes $=400 \div 6=67$ (approx.)
5. Number of hours in 18 days $=18 \times 24=432$ hours
6. Number of boys $=4680-3098=1582$
7. The amount of money Kunal has to pay $=9 \times 35+9 \times 26=9(35+26)=$ Rs 549
8. Other number $=5735-2680=3055$
9. Factors of 7: 1,7

Factors of $40=1,2,4,5,8,20,40$
Factors of $85=1,5,17,85$
10. Prime factors of $28: 2,7$

Prime factors of $72=2,3$
Prime factors of $53=53$

Chapter 1

Knowing Our Numbers

Innings 1.1

1. (a) Greatest number: 6549

Smallest number: 45
(b) Greatest number: 9210

Smallest number: 1092
2. (a) Smallest number: 206 Greatest number: 620
(b) Smallest number: 2067

Greatest number: 7620
3. Greatest 5-digit number ending in 1:99991
4. Greatest : 9876

Smallest : 1023
5. (a) Greatest number: 6650

Smallest number: 5006
(b) Greatest number: 9972

Smallest number: 2279
(c) Greatest number: 8831

Smallest number: 1138
6. (a) Ascending order: 7081, 8018, 8081, 60081
(b) Ascending order: 1023, 1123, 10120, 11120
7. Greatest number: 97510
8. (a) False.

The greatest 4-digit number using the digits $1,7,6,0$ without repeating any digit is 7610 .
(b) False

1 gram $=1000 \mathrm{mg}$
(c) False
$1 \mathrm{kl}=10001$
9. Smallest 8 -digit number $=10000000$

Largest 8-digit number $=99999999$
Difference between the two $=89999999$
Total 8-digit numbers are $=89999999+1$
= 9,00,00,000

Innings 1.2

1. (a) $3,24,670 \rightarrow$ Three lakh twenty-four thousand six hundred and seventy
(b) $17,456,800 \rightarrow$ Seventeen million four hundred fifty-six thousand eight hundred
(c) $4,98,76,544 \rightarrow$ Four crore ninety-eight lakh seventy-six thousand five hundred and forty-four
(d) $2,033,300,002 \rightarrow$ Two billion thirty-three million three hundred thousand and two
(e) $8,00,02,207 \rightarrow$ Eight crore two thousand two hundred and seven

2 (a) Eleven crore three lakh seven
$\Rightarrow 11,03,00,007$
(b) Ninety million two thousand

$$
\Rightarrow 90,002,000
$$

(c) Thirty-four lakh five hundred
$\Rightarrow 34,00,500$
(d) Fifty-nine crore five lakh thirty-two thousand seventy

$$
\Rightarrow 59,05,32,070
$$

(e) Thirteen million eleven

$$
\Rightarrow 13,000,011
$$

(f) Forty lakh eighty thousand fifty

$$
\Rightarrow 40,80,050
$$

3. (a) 87645003

Indian System: $8,76,45,003 \Rightarrow$ Eight crore seventy-six lakh forty-five thousand and three

International System: 87,645,003 \Rightarrow Eighty-seven million six hundred forty-five thousand
and three
(b) 4570010

Indian System: $45,70,010 \Rightarrow$ Forty-five lakh seventy thousand and ten International System: $4,570,010 \Rightarrow$ Four million five hundred seventy thousand and ten
(c) 66006600

Indian System: $6,60,06,600 \Rightarrow$ Six crore sixty lakh six thousand six hundred International System: $66,006,600 \Rightarrow$ Sixty-six million six thousand six hundred
(d) 25783045

Indian System: $2,57,83,045 \Rightarrow$ Two crore fifty-seven lakh eight-three thousand and forty

five

International system: $25,783,045 \Rightarrow$ Twenty-five million seven hundred eighty-three thousand and forty-five
(e) 1400088

Indian System: $14,00,088 \Rightarrow$ Fourteen lakh and eighty-eight
International System: $1,400,088 \Rightarrow$ One million four hundred thousand and eighty-eight
4. Place values of 8 in 80004580 are 80000000 and 80 .

Difference $=80000000-80$

$$
=79999920
$$

Place values of 8 in 1807968 are 800000 and 8 .
Difference $=800000-8$

$$
=799992
$$

5. (a) Descending order:

678542, 610000, 609999, 459720
(b) Descending order: 7864625, 7658462, 6874562, 4678265
6. Three consecutive numbers after $5,10,999$ are $5,11,000 ; 5,11,001 ; 5,11,002$.
7. (a) Number

2,54,658
(b) $4,00,079$
(c) $36,089,007$

Expanded form

Tl	L	T Th	Th	H	T	O
	2	5	4	6	5	8
	4	0	0	0	7	9

TM	M	H Th	T Th	Th	H	T	O
3	6	0	8	9	0	0	7

8. Smallest 8 -digit number using 7 different digits will be 10023456

Indian system	$: 1,00,23,456$
International system	$: 10,023,456$

9. Predecessor of ten lakh in words would be nine lakh ninety-nine thousand nine hundred and ninety-nine, that is, $9,99,999$.
In the international system, it would be written as 999,999 , that is, nine hundred ninetynine thousand nine hundred ninety-nine.
10. Greatest 7-digit number having only three different digits would be 9999987.

Indian system: 99,99,987
\Rightarrow Ninety-nine lakh ninety-nine thousand nine hundred eighty-seven

International system: 9,999,987
\Rightarrow Nine million nine hundred ninety-nine thousand nine hundred eighty seven
11. Number of copies published in $2009=23,500$

Number of copies published in $2010=50,900$
Number of copies published in $2011=1,15,750$
Total number of copies published $=1,90,150$
12. There are 8 rows in each tier, therefore, total number of rows in three tier would be 8×3 $=24$ rows

One row can accommodate 28 cars
24 rows can accommodate $=24 \times 28$ cars

$$
=672 \mathrm{cars}
$$

So 672 cars can be accommodated in one block; hence, the maximum capacity of cars parking if there are 5 such blocks would be $5 \times 672=3360$ cars.

Innings 1.3

1. The thickness of mobile phone	\rightarrow Millimetre
Distance between two cities	\rightarrow Kilometre
Water in a glass	\rightarrow Millilitre
Quantity of rice bought from a grocery shop	\rightarrow Kilogram
Length of a room	\rightarrow Metre
Weight of a medicine	\rightarrow Milligram
Weight of a pencil	\rightarrow Gram

2. Distance from Bengaluru to Delhi $=17,33,000 \mathrm{~m}$

Distance from Delhi to los Angeles $\quad=\underline{1,28,74,000} \mathrm{~m}$
Total distance travelled $\quad=\underline{1,46,07,000} \mathrm{~m}$
Which is equal to $14,607 \mathrm{Km}$
3. Oil packed in bottle $\quad=750 \mathrm{ml}$

Total oil produced $\quad=1800 \mathrm{kl}=1,80,00,00,000 \mathrm{ml}$
Therefore number of bottles required $=\frac{1800000000}{750}$

$$
=24,00,000 \text { bottles }
$$

4. Diameter of Mercury $=48,78,000 \mathrm{~m} \quad=4,878 \mathrm{~km}$

Diameter of Uranus $\quad=5,12,00,000 \mathrm{~m} \quad=51,200 \mathrm{~km}$
Diameter of Uranus is bigger by $51,200-4878 \mathrm{~km}$ which is equal to $46,322 \mathrm{~km}$
5. Hari's school's distance from home $=500 \mathrm{~m}$

His father's office's distance from his school $=1 \mathrm{~km} 200 \mathrm{~m}=1200 \mathrm{~m}$
Total distance of Hari's father's office from home $=500 \mathrm{~m}+1200 \mathrm{~m}=1700 \mathrm{~m}$

Innings 1.4

1. (a) $654+714$
\Rightarrow Rounding off: $700+700=1400$
(b) $492+786$
\Rightarrow Rounding off: $500+800=1300$
(c) $21345+4308$
\Rightarrow Rounding off: $21300+4300=25600$
(d) $23844+16907$
\Rightarrow Rounding off: $23800+16900=40700$
2. (a) $83-67$
\Rightarrow Rounding off: $80-70=10$
(b) $78-36$
\Rightarrow Rounding off: $80-40=40$
(c) $6798-454$
\Rightarrow Rounding off: $6800-450=6350$
(d) $10424-8556$
\Rightarrow Rounding off: $10420-8560=1860$
(e) 6102-3301
\Rightarrow Rounding off: $6100-3300=2800$
3. (a) 93×67

Rounding off: $90 \times 70=6300$
(b) 346×59

Rounding off: $350 \times 60=21000$
(c) 41×114

Rounding off: $40 \times 110=4400$
(d) 291×321

Rounding off: $290 \times 320=92800$
(e) 1465×876

Rounding off: $1470 \times 880=1293600$
(f) $898 \div 28$

Rounding off: $900 \div 30=30$
(g) $632 \div 31$

Rounding off: $630 \div 30=21$
4. (a) False.

Estimated sum of 4162 and 21319 rounded off to the nearest hundred is 25,500 .
(b) False.

When rounded off to the nearest thousand, the number 63,634 becomes 64,000 .
(c) True.
5. Total number of cartons in the warehouse $=4056$

Number of books in each cartons $=53$
Total number of books in the warehouse $=4056 \times 53$

$$
=214968
$$

Hence, the better estimate would be 200000 books.

Innings 1.5

1. $959 \Rightarrow$ CMLIX
$666 \Rightarrow$ DCLXVI
$147 \Rightarrow$ CXLVII
1054 • MLIV
$1148 \Rightarrow$ MCXLVIII
$97 \Rightarrow$ XCVII
$74 \Rightarrow$ LXXIV
$124 \Rightarrow$ CXXIV
$359 \Rightarrow$ CCCLIX
$16 \Rightarrow$ XVI
2. $\mathrm{DCV} \Rightarrow 605$

CDLXV $\Rightarrow 465$
XLIV $\Rightarrow 44$
CML $\quad \Rightarrow 950$
LXIII $\Rightarrow 63$
LXIV $\quad \Rightarrow 64$
MDXIV $\Rightarrow 1514$
CMXCIX $\Rightarrow 999$
LVI $\quad \Rightarrow 56$
DCXXIX $\Rightarrow 629$
3. 1869 can be written as MDCCCLXIX.
4. India's year of Independence was 1947 and can be written as MCMXLVII.
5. (a) Greatest 3-digit number $=999$

In roman numerals: CMXCIX
(b) MCDXVIII can be written as 1418 .

Successor $1418 \rightarrow 1419$.
(c) Roman numeral D represents 500.

Three numbers preceding D are CDXCVII, CDXCVIII, CDXCIX.
6. (a) $9 \times(21+9)=9 \times 21+9 \times 9$

$$
=189+81=270
$$

(b) $356-(400-289)$

$$
=356-111=245
$$

(c) 105×95

$$
\begin{aligned}
=(100+5) \times 95 & =100 \times 95+5 \times 95 \\
= & 9500+475=9975
\end{aligned}
$$

(d) $150-[80-(15 \times 4-6 \times 5)]$

$$
=150-[80-(60-30)]
$$

$$
=150-[80-30]
$$

$$
=150-50
$$

$$
=100
$$

$$
\text { (e) } 36 \div(7 \times 8-50+2 \times 3)-45 \div(2 \times 5+5)
$$

$$
=36 \div(56-50+6)-45 \div(10+5)
$$

$$
=36 \div(62-50)-45 \div 15
$$

$$
=36 \div 12-45 \div 15
$$

$$
=3-3=0
$$

$$
\text { (f) } 80 \div[90-\{100-5-3 \times(7-4)\}]
$$

$$
=80 \div[90-\{100-5-3 \times 3\}]
$$

$$
=80 \div[90-\{100-5-9\}]
$$

$$
=80 \div[90-\{100-14\}]
$$

$$
=80 \div[90-86]
$$

$$
=80 \div 4=20
$$

Chapter Innings

1. (i) (c) 9876
(ii) (d) 5010
(iii) (a) XXL
(iv) (d) 9499
(v) (c) 10 lakh
2. (a) 43×56

$$
=43 \times(50+6)
$$

$$
=43 \times 50+43 \times 6
$$

$$
\begin{aligned}
& =2150+258 \\
& =2308
\end{aligned}
$$

(b) 109×402

$$
=(100+9) \times 402
$$

$$
=402 \times 100+402 \times 9
$$

$$
=40200+3618
$$

$$
=43818
$$

$$
\text { (c) } 598 \times 97
$$

$$
=598 \times(100-3)
$$

$$
=598 \times 100-598 \times 3
$$

$$
=59800-1794
$$

$$
=58106
$$

(d) 196×27

$$
\begin{aligned}
& =(200-4) \times 27 \\
& =200 \times 27-4 \times 27 \\
& =5400-108 \\
& =5292
\end{aligned}
$$

3. Largest number $\quad \rightarrow 9873$

Smallest number $\quad \rightarrow \underline{3789}$
Difference $\quad=\underline{6084}$
4. Sum of 46813 and $34568=81381$

Rounding off to the nearest hundred $\Rightarrow 81400$
Difference of 46813 and $34568=12245$
Rounding off to the nearest hundred $\Rightarrow 12200$
5. Difference between 1 million and $2679=997,321$
6. 2568 multiplied by 65 gives 166920

2568 multiplied by 56 gives 143808
Difference $=23112$
7. Largest 5 -digit number $=99999$

Smallest 5-digit number $=10000$
Difference $=89999$
Difference $+1=90000$
\therefore There are 90000 five-digit numbers.
8. Population of china in 2005 was 1307600000

Population of china in 2001 was $\underline{1276300000}$
Change in population 31300000
\therefore The change in population was thirty-one million three hundred thousand.
9. Time spent by Srivatsan for exercise each day $=45$ mins.

Time spent by Srivatsan for exercise in a week $=45 \times 7$

$$
=315 \mathrm{mins} .
$$

Or 5 hours 15 mins.
10. Length of the room $=12$ metres 500 cm

Length of the room $=17$ metres
Width of the room $=2$ metres 900 cm

$$
=11 \text { metres }
$$

Difference of width and length $=6$ metres or 600 cm
11. Wheat consumption of a student $=250 \mathrm{~g}$

Wheat consumption of 145 students $=250 \times 145 \mathrm{~g}$

$$
\begin{aligned}
& =250 \times(100+45) \mathrm{g} \\
& =250 \times 100+250 \times 45 \mathrm{~g} \\
& =25000+11250 \mathrm{~g} \\
& =36250 \mathrm{~g}=36.25 \mathrm{~kg}
\end{aligned}
$$

Rice consumption of a student $\quad=150 \mathrm{~g}$
Rice consumption of 145 students $=150 \times 145 \mathrm{~g}$

$$
\begin{aligned}
& =(100+50) \times 145 \mathrm{~g} \\
& =145 \times 100+145 \times 50 \mathrm{~g} \\
& =14500+7250 \mathrm{~g} \\
& =21750 \mathrm{~g}=21.75 \mathrm{~kg}
\end{aligned}
$$

Pulses consumption of a student $=100 \mathrm{~g}$
Pulses consumption of 145 students $=145 \times 100 \mathrm{~g}$

$$
\begin{aligned}
& =14500 \mathrm{~g} \\
& =14.5 \mathrm{~kg}
\end{aligned}
$$

Sugar consumption of a student $=75 \mathrm{~g}$
Sugar consumption of 145 students $=75 \times 145 \mathrm{~g}$

$$
\begin{aligned}
& =(100-25) \times 145 \mathrm{~g} \\
& =145 \times 100-145 \times 25 \mathrm{~g} \\
& =14500-3625 \mathrm{~g} \\
& =10875 \mathrm{~g} \\
& =10.875 \mathrm{~kg}
\end{aligned}
$$

12. Cost of each books $=` 43$

Cost of 68 books $=` 68 \times 43$

$$
\begin{aligned}
& =` 68 \times(40+3) \\
& =` 68 \times 40+` 68 \times 3
\end{aligned}
$$

$$
\begin{aligned}
& =` 2720+` 204 \\
& =` 2924
\end{aligned}
$$

Cost of one bag of wheat $=` 105$
Cost of 54 bags of wheat $=` 105 \times 54$

$$
\begin{aligned}
& =`(100+5) \times 45 \\
& =` 100 \times 45+` 5 \times 45 \\
& =` 4500+` 225 \\
& =` 4725
\end{aligned}
$$

First shopkeeper spent less money by ` \(4725-` 2924=` 1801\) 13. Selling price of one mobile phone \(=` 7000\)

Selling price of 125 mobile phones $=` 7000 \times 125$

$$
\begin{aligned}
& =` 7000 \times(100+25) \\
& =`(7000 \times 100+7000 \times 25) \\
& =`(7,00,000+1,75,000) \\
& ={ }^{`} 8,75,000
\end{aligned}
$$

Cost price of 35 music systems $=` 8,75,000$
Cost price of each music system $=\frac{8,75,000}{35}$

$$
=` 25,000
$$

Mental Maths

1. Greatest 5-digit number using the given digits $\rightarrow 88643$

Smallest 5-digit number using the given digits $\rightarrow \underline{33468}$
Difference $=55175$
2. Given number $=586701$

Number formed by interchanging 5 and $7=786501$

$$
\begin{aligned}
\text { Difference } & =786501-586701 \\
& =199800
\end{aligned}
$$

3. 10 million is $10,000,000$

In Indian system: $1,00,00,000$ or 1 crore
4. V, L, D cannot be repeated.
5. 243 three-digit numbers have 9 in them.
6.
(a) $63 \rightarrow$ LXIII
(b) $82 \rightarrow$ LXXXII
(c) $572 \rightarrow$ DLXXII
7. $15 \mathrm{~km}=15000000 \mathrm{~mm}$
$215 \mathrm{~m}=215000 \mathrm{~mm}$
$61 \mathrm{~cm}=610 \mathrm{~mm}$
Total $=15215610 \mathrm{~mm}$ $+8 \mathrm{~mm}$
15215618 mm
Indian system: 1,52,15,618
\Rightarrow One crore fifty-two lakh fifteen thousand six hundred and eighteen

Googly

1. Zero has its place value and face value same in every number it is present.
2. Akash is tallest, Sohini is shortest.

Tallest to shortest: Akash, Preeti, Vishu, Sohini.
3. Height of room $=3 \mathrm{~m} 600 \mathrm{~cm}=900 \mathrm{~cm}$

Everyday insect climbs $=1 \mathrm{~m} 400 \mathrm{~cm}=500 \mathrm{~cm}$
Everyday insect slides $=200 \mathrm{~cm}$
Hence, resultant $=500-200=300 \mathrm{~cm}$
\therefore The insect will take $\frac{900}{300}=3$ days to climb the wall

Real-life Connect

Rank of cities

1. Delhi: $1,67,53,235 \rightarrow$ One crore sixty-seven lakh fifty-three thousand two hundred thirty-five
2. Bengaluru: $95,88,910 \rightarrow$ Ninety-five lakh eighty-eight thousand nine hundred ten
3. Pune: $94,26,959 \rightarrow$ Ninety-four lakh twenty-six thousand nine hundred fifty-nine
4. Hydrebad: $68,09,970 \rightarrow$ Sixty-eight lakh nine thousand nine hundred seventy
5. Kolkata: $44,86,679 \rightarrow$ Forty-four lakh eighty-six thousand six hundred seventy-nine

Most populous city \rightarrow Delhi $\rightarrow 1,67,53,235$
Least populous city \rightarrow Kolkata $\rightarrow \underline{44,86,679}$
Difference $=22,66,556$

Chapter 2

Whole Numbers

Innings 2.1

1. (a) One
(b) Left
(c) Add
(d) Predecessor
(e) Two
2. (a) True
(b) False. Zero is the smallest whole number.
(c) False. One is the smallest natural number.
(d) False. On the number line, the smaller number lies to the left of the given number.
(e) True
3. (a) 38
(b) 2009
(c) 1539
(d) $1,00,019$
(e) $1,04,999$
(f) 2,00,999
(g) 1,67,893
4. (a) 257
(b) $5,91,002$
(c) 3201
(d) 562
(e) 2100
(f) $4,10,000$
(g) $65,18,09,100$
5.

6. $89-56=33$ (which include 89)
\therefore There are 32 whole numbers between 56 and 89 .
7. Let us start from 10 . We then move towards the left taking one jump of one unit. After making six jumps, we reach 4 .

8. Let us start from 0 and move 5 units at a time to the right. We make three such jumps. We reach 15.

Innings 2.2

1. (a) $219 \times \underline{0}=0$
(b) $456 \div 456=\underline{1}$
(c) $1971 \div 1=\underline{1971}$
(d) $314 \times 18=314 \times 10+314 \times \underline{8}$
(e) $\underline{487}+936=\underline{936}+487$
(f) $8769+2000+135=135+\underline{2000}+8769$
(g) $37 \times(93+7)=37 \times \underline{100}$
(h) $251 \times 100=251 \times 94+\underline{251} \times 6$
2. (a) $567+470+333+230$
$=(567+333)+(470+230)$
$=900+700$
$=1600$
(b) $1983+647+217+353$
$=(1983+217)+(647+353)$
$=2200+1000$
$=3200$
(c) $13,518+777+223+482$
$=(13518+482)+(777+223)$
$=14000+1000$
$=15000$
(d) $31+32+33+34+35+65+66+67+68+69$
$=(31+69)+(32+68)+(33+67)+(34+66)+(35+65)$
$=100+100+100+100+100$
$=500$
3. | 5173 | 13870 |
| ---: | ---: |
| -3988 | |
| 1185 | -7030 |
4. (a) $250 \times 38 \times 40$
$=38 \times(250 \times 40)$
$=38 \times 10000$
$=380000$
(b) $8 \times 693 \times 125$
$=(8 \times 125) \times 693$
$=1000 \times 693$
$=693000$
(c) $439 \times 5 \times 60$
$=439 \times(5 \times 60)$
$=439 \times 300$
$=13170$
(d) $2 \times 4 \times 8 \times 50 \times 125$
$=(2 \times 4 \times 125) \times(8 \times 50)$
$=((2 \times 4) \times 125) \times 400$
$=(8 \times 125) \times 400$
$=1000 \times 400$
$=400000$
(e) $5 \times 333 \times 20$
$=333 \times(5 \times 20)$
$=333 \times 100$
$=33300$
5. (a) $24598 \times 159-24598 \times 59$
$=24598(159-59)$
$=2459800$
(b) $61725 \times 92+61725 \times 8$
$=61725 \times 100$
$=6172500$
(c) $584 \times 99+584$
$=584 \times(99+1)$
$=584 \times 100$
$=58400$
(d) 268×99
$=268 \times(100-1)$
$=268 \times 100-268$
$=26800-268$

$$
=26532
$$

(e) $45 \times 1001-45$
$=45 \times(1001-1)$
$=45 \times 1000$
$=45000$
(f) $3845 \times 5 \times 678+769 \times 25 \times 322$
$=769 \times 5 \times 5 \times 678+769 \times 25 \times 322$
$=769 \times 25 \times(678+322)$
$=19225 \times 1000$
$=19225000$
6. Largest 3-digit number $=999$

Smallest 4-digit number $=1000$

$$
\begin{aligned}
\text { Product } \quad & =999 \times 1000 \\
& =(1000-1) \times 1000 \\
& =1000000-1000 \\
& =999000
\end{aligned}
$$

7. $7385 \div 19=388$
\Rightarrow Dividend $=7385$, Divisor $=19$, quotient $=388$, Remainder $=13$ 388
$1 9 \longdiv { 7 3 8 5 }$
$\underline{57}$
168
$\underline{152}$
165
$\underline{152}$
13
Now, Quotient \times Divisor + Remainder $=$ Dividend
$\Rightarrow 388 \times 19+13$
$\Rightarrow 7372+13$
$\Rightarrow 7385$ = Dividend
8. Dance class expenditure for a month $=` 4500$

Dance class expenditure for an year $=` 4500 \times 12$
Badminton coaching expenditure for a month $=` 1750$
Badminton coaching expenditure for a year $=` 1750 \times 12$
Total expenditure for one year $=` 4500 \times 12+` 1750 \times 12$

$$
\begin{aligned}
& =`(4500+1750) \times 12 \\
& =` 6250 \times 12 \\
& =` 75,000
\end{aligned}
$$

9. Amount spent on refreshments $=` 17,500$

Amount given to event the management company $=` 25,750$
Amount given as tips
$=` 4580$
Total expenditure
$=\overline{47,830}$
Budget for birthday party $=` 50,000$
Amount given for charity $=` 50,000-` 47,830$

$$
=` 2,170
$$

10.

$5 3 \longdiv { 3 4 8 5 }$
$\frac{325}{235}$
$\frac{195}{40}$

3485 when divided by 65 leaves a remainder of 40 .
Now, $65-40=25$
$\therefore 25$ must be added to 3485 so that it is exactly divisible by 65 .
$\Rightarrow 3485+25=3510$ and $3510 \div 65=54$

Innings 2.3

1. (a) $1 \times 9+1=10$
$12 \times 9+2=110$
$123 \times 9+3=1110$
$1234 \times 9+\underline{4}=\underline{11110}$
$\underline{12345} \times \underline{9}+\underline{5}=\underline{111110}$
$\underline{123456} \times \underline{9}+\underline{6}=\underline{1111110}$
(b) $19 \times 19-18 \times 18=\underline{361}-\underline{324}=\underline{37}=\underline{19}+\underline{18}$
$25 \times 25-24 \times 24=\underline{625}-\underline{576}=\underline{49}=\underline{25}+\underline{24}$
$101 \times 101-100 \times 100=\underline{10201}-\underline{10000}=\underline{201}=\underline{100}+\underline{101}$

Let the two whole numbers be x and y.
Now $x \times y=0$
As we know, ' 0 ' multiplied by any number is ' 0 '.
\therefore either $x=0$ or $y=0$ or $x=y=0$
Let x be s.
Then $s \times y=0$

$$
\Rightarrow y=\frac{0}{s}=0
$$

Similarly, when $y=s, x=0$
Now let x be 0 .
Then $0 \times y=0$ or $y=0$
2. (a) 16

(b) 25
$\bullet!!$
(c) 28

(d) 32
$\bullet \bullet \bullet$
3. (a) The sum of the first 20 odd numbers:

$$
\begin{aligned}
& \begin{array}{l}
1+3+7+9+11+13+15+17+19+21+21+23+27+29+31+33+35+37 \\
+39 \\
\quad= \\
=400
\end{array}, 20^{2}
\end{aligned}
$$

(b) Sum of the odd numbers from 21 to 50
$21+23+25+27+29+31+33+37+39+41+43+45+45+47+49$

$$
\begin{aligned}
& =35^{2}-20^{2} \\
& =1225-400 \\
& =825
\end{aligned}
$$

4. $3333 \times 3334=\underline{11112222}$
$33333 \times 33334=\underline{1111122222}$

Honing Multiple Intelligences

$7 \times 4=28=4 \times 7$

Chapter Innings

1. (i) (b) Their difference
(ii) (c) 3009
(iii) (e) 49
(iv) (a) 25
(v) (b) 2
2. (i) Commutative
(ii) Commutative
(iii) $15 \times(8+2)=15 \times 8+15 \times \underline{2}$ is true because whole numbers satisfy distributive property of multiplication over addition.
(iv) $\underline{1}$ is the multiplicative identity and the additive identity of whole numbers is $\underline{0}$.
(v) Subtraction and division operations.
3. $18+23=23+18 ; 25 \times 31=31 \times 25 \rightarrow$ Distributivity of multiplication over addition.
$16 \times(9+41)=16 \times 9+16 \times 41 \rightarrow$ Commutative property of addition and multiplication.
$35+(17+21)=(35+17)+21 \rightarrow$ Associative property of addition.
$16 \times(29-41)=16 \times 29-16 \times 41 \rightarrow$ Distributivity of multiplication over subtraction.
4.

(a) Closure Property:
(i) $1+7=8$
(ii) $17+4=21$
(iii) $29+13=42$
(b) Commutative property of addition:
(i) $1+7=8=7+1$
(ii) $17+4=21=4+17$
(iii) $29+13=42=13+29$
(c) Associative property of multiplication:
(i) $(1 \times 7) \times 3=7 \times 3=21=1 \times(7 \times 3)$
(ii) $(17 \times 4) \times 2=68 \times 2=136=17 \times(4 \times 2)$
(iii) $(29 \times 13) \times 4=87 \times 4=348=29 \times(13 \times 4)$
(d) Distributive property of multiplication over subtraction:
(i) $3 \times(7-1)=18=3 \times 7-3 \times 1$
(ii) $2 \times(17-4)=26=2 \times 17-2 \times 4$
(iii) $4 \times(29-13)=64=4 \times 29-4 \times 13$
5. Smallest 4-digit number $=1000$

$$
1000 \div 27 \text { gives a remainder of } 1 . \quad \begin{array}{cc}
37 \\
271000 \\
\frac{81}{190} \\
\frac{189}{1} \\
\hline
\end{array}
$$

$27-1=26$
\therefore Smallest 4-digit number completely divisible by 27 is $1000+26=\underline{1026}$
6. (i) 1594×499
$=1594 \times(500-1)$
$=1594 \times 500-1594 \times 1$
$=797000-1594$
$=795506$
(ii) $1548 \times 999 \div 1548$

$$
\begin{aligned}
& =1548 \times(999+1) \\
& =1548 \times 1000 \\
& =1548000
\end{aligned}
$$

7. The sum of the first 50 whole numbers is 1275 .

The product of the first 50 whole numbers will be 0 .
Hence, the sum of the first 50 whole numbers (1275) > the product of the first 50 whole numbers (0).
8. Predecessor of $3,65,000=3,64,999$

Successor of $32,91,999=32,92,000$
Sum $=\underline{36,56,999}$
9. $40 \times 30=1200$

$$
12,500 \div 10=1250
$$

$$
1250-1200=50
$$

$\therefore 50$ should be added to (40×30) so that the sum is equal to $(12500 \div 10)$.
10. Milk sold on Saturday and Sunday $=(45+59)$

Cost of milk $=` 21$ per l
Total amount earned by arun $=(45+59) \times 21$

$$
\begin{aligned}
& =45 \times 21+59 \times 21 \\
& =945+1239 \\
& ={ }^{-} 2184
\end{aligned}
$$

Mental Maths

1. (a) 0
2. (c) 9988
3. (c) 4×4
4. (b) 33
5. (a) $(51 \times 7) \times 14=357 \times 14$

$$
=4998
$$

Now, $51 \times(7 \times 14)=51 \times 98$

$$
=4998
$$

Hence $(51 \times 7) \times 14=51 \times(7 \times 14)$
\Rightarrow Associative property of multiplication holds true.

$$
\begin{aligned}
& \text { (b) } \begin{aligned}
& 25 \times(11 \times 10)=25 \times 110 \\
&=2750 \\
& \begin{aligned}
(25 \times 11) \times 10 & =275 \times 10 \\
& =2750
\end{aligned} \\
& \therefore 25 \times(11 \times 10)=(25 \times 11) \times 10 \\
& \Rightarrow \text { Associative property of multiplication holds true. }
\end{aligned}
\end{aligned}
$$

(c) $(164 \times 6) \times 9=984 \times 9$

$$
=8856
$$

$164 \times(6 \times 9)=164 \times 54$

$$
=8856
$$

$\therefore(164 \times 6) \times 9=164 \times(6 \times 9)=8856$
\Rightarrow Associative property of multiplication holds true.

Googly

1. (a) Not defined
(b) 0
(c) Not defined
(d) Not defined
2. No

CHAPTER 3

Playing With Numbers

Innings 3.1

1. (i) multiple
(ii) 1
(iii) multiples and factors
(iv) first
2. Number

Factors

13
1, 13
19
1, 19
25
$1,5,25$
42
$1,2,3,6,7,14,21,42$
56
$1,2,4,7,8,14,28,56$
75
$1,3,5,15,25,75$
100
$1,2,4,5,10,20,25,50$
3. Number

First five multiples
9
$9,18,27,36,45$
15
$15,30,45,60,75$
20
$20,40,60,80,100$
25
$25,50,75,100,125$
30
$30,60,90,120,150$
4. (i) Multiples of 2 between 11 and 35 are:
$12,14,16,18,20,22,24,26,28,30,32,34$
(ii) 6 and 28 are two perfect numbers less than 50 .

Innings 3.2

1. (i) 3
(ii) 4
(iii) 19
(iv) 2
(v) prime
(vi) $25(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83$, 89, 97)
(vii) 9
2. (i) False (ii) False (iii) False (iv) False (v) False
3. (i) Twin primes
(iii) 97
(v) 2 and 3
4. (i) Prime numbers between 1 and 30:

$$
2,3,5,7,11,13,17,19,23,29
$$

(ii) Prime numbers between 50 and 80 :
$53,59,61,67,71,73,79$
5. $28=5+23$
$44=7+37$
$60=7+53$
$88=5+83$
$90=7+83$
$100=3+97$
6. $12=5+7$
$36=17+19$
$84=41+43$
$144=71+73$
7. 7 and 13

3 and 17
11 and 19
17 and 23
17 and 13
8. $90,91,92,93,94,95,96$

Innings 3.3

1. (i) b
(ii) d
(iii) d
2. (i) $78 \underline{7} 5$ is divisible by 9 .
(ii) $4765 \underline{0} 2$ is divisible by $3 ; 476592$ is divisible by 3 .
(iii) $416 \underline{8} 23$ is divisible by 11 .
(iv) $9273 \underline{2} 4$ is divisible by $6 ; 927384$ is divisible by 4 .
(v) 193128 is divisible by $8 ; 193 \boxed{92}$ is divisible by 8 .
(vi) $341 \underline{0} 0$ is divisible by $5 ; 341 \boxed{9} 5$ is divisible by 5 .
3. (i) False
(ii) True
(iii) True
(iv) False
(v) True
4. (i) Numbers ending in $0,2,4,6,8$ are divisible by 2 .
$\therefore 8740$ is divisible by 2 and 169305 and 60667 are not.
(ii) For a number to be divisible by 3 , the sum of digits of the number must be divisible by 3 .

236144: $2+3+6+1+4+4=20$
20 is not divisible 3, and hence, 236144 is not by 3 .
1111: $1+1+1+1=4$
4 is not divisible by 3 , and hence, 1111 is not divisible by 3 .
$615381: 6+1+5+3+8+1=24$

24 is divisible by $3 . \therefore 615381$ is divisible by 3 .
(iii) For a number to be divisible by 4 , the number formed by the last two digits of the number should be divisible by 4 . 3948: 48 is divisible by $4 . \therefore 3948$ is divisible by 4 .

571320: 20 is divisible by $4 . \therefore 571320$ is divisible by 4 .
44444: 44 is divisible by $4 . \therefore 44444$ is divisible by 4 .
(iv) For a number to be divisible by 8 , the number formed by the last three digits of the number should be divisible by 8 .

321128: 128 is divisible by $8: \therefore 321128$ is divisible by 8 .
4016: 016 is divisible by $8 . \therefore 4016$ is divisible by 8 .
6500: 500 is not divisible $8 . \therefore 6500$ is not divisible by 8 .

9864: 864 is divisible by $8 . \therefore 9864$ is divisible by 8 .
(v) For a number to be divisible by 9 , sum of all the digits of the number should be divisible by 9 .

13146: $1+3+1+4+6=15.15$ is not divisible by 9 .
$\therefore 13146$ is not divisible by 9 .
13995: $1+3+9+9+5=27.27$ is divisible by 9 .
$\therefore 13995$ is divisible by 9 .
53766: $5+3+7+6+6=27.27$ is divisible by 9 .
$\therefore 53766$ is divisible by 9 .
(vi) For a number to be divisible by 11 , the difference between the sums of its alternate digits should be zero or divisible by 11 .

22222: $2+2+2=6$ and $2+2=4$
$6-4=2 \neq 0$
As 2 is not divisible by 11,22222 is not divisible by 11 .
78419: $7+4+9=20$ and $8+1=9$
$20-9=11$

As 11 is divisible by 11,78419 is divisible by 11 .
61537: $6+5+7=18$ and $1+3=4$
$18-4=14 \neq 0$

As 14 is not divisible by 11,61537 is not divisible by 11 .
5. (i) 60 is divisible by 5 and 10 but not by 50 .
(ii) 24 is divisible by 3 and 6 but not by 18 .
(iii) 84 is divisible by 6,7 and 4 .

Innings 3.4

1. (a) Factors of $36: 1,2,3,4,6,9,12,18,36$

Factors of 45: 1, 3, 5, 9, 15, 45
Common factors: $1,3,9$
(b) Factors of 75: 1, 3, 5, 15, 25, 75

Factors of 100: 1, 2, 4, 5, 10, 20, 25, 50, 100
Factors of 125: 1, 5, 25, 125
Common factors: $1,5,25$
(c) Factors of $56: 1,2,4,7,8,14,28,56$

Factors of $120: 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120$
Common factors: $1,2,4,8$
2. (a) $105,210,315, \ldots$.
(b) $40,80,120, \ldots$
(c) $72,144,216, \ldots$
3. (a) Factors of 21: 1, 3, 7, 21

Factors of 61: 1, 61
Common factors: 1
$\therefore 21$ and 61 are co-primes.
(b) Factors of 26: 1, 2, 13, 26

Factors of 65: 1, 5, 13, 65
Common factors: 1,13
$\therefore 26$ and 65 are not co-primes.
(c) Factors of 45: 1, 3, 5, 9, 15, 45

Factors of 54: 1, 2, 3, 6, 9, 18, 27, 54
Common factors: $1,3,9$
$\therefore 45$ and 54 are not co-primes.
4. (i) $140=2 \times 2 \times 5 \times 7$
(ii) $2094=2 \times 3 \times 349$
(iii) $490=2 \times 5 \times 7 \times 7$
(iv) $4631=11 \times 421$
5. \quad Smallest 4-digit number $=1000$
$1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$
6. Smallest number with 4 different prime factors would be
$2 \times 3 \times 5 \times 7=210$
7. $23100: 2+3+1+0+0=6$

As 6 is divisible by $3, \therefore 23100$ is divisible by 3 .
Also $2+1+0=3$
$3+0=3$
$3-3=0$
$\therefore 23100$ is divisible by 11 .
$23100 \div 3=7700$
and $7700 \div 11=700 ? 23100=3 \times 11 \times 700$
$\therefore 23100$ is divisible by 33 .
8. Factors of $1729: 1,7,13,19,91,133,247,1729$

Innings 3.5

1. (i)

HCF of 28 and 36 is 4.
$3 0 0 \longdiv { 4 5 0 } 1$
$\left.\frac{300}{150} \begin{array}{c}300 \\ \frac{300}{0}\end{array}\right)$
HCF of 300 and 450 is 150
$3 6 4 \longdiv { 7 8 0 } 2$
728
$5 2 \longdiv { 3 6 4 } 7$
$\frac{364}{0}$
HCF of 364 and 780 is 52.
2. (i)

2	$62,79,132$
2	$31,79,66$
3	$31,79,33$
	$31,79,11$

LCM of $62,79,132=2 \times 2 \times 31 \times 79 \times 3 \times 11=323268$
(ii)

3	$75,60,105$
5	$25,20,35$
	$5,4,7$

LCM of $75,60,105=3 \times 5 \times 5 \times 4 \times 7$ $=2100$
(iii)

2	$80,96,125$
2	$40,48,125$
2	$20,24,125$
2	$10,12,125$
5	$5,6,125$
	$1,6,25$

LCM of $80,96,125=2 \times 2 \times 2 \times 2 \times 5 \times 6 \times 25=12000$
3. To find the largest number that will divide 113, 135 and 160 leaving 5, 3 and 4 remainders respectively, we need to find HCF of $113-5 ; 135-3$ and $160-4$, i.e., 108, 132 and 156

2	108
2	54
3	27
3	9
3	3
	1

2	132
2	66
3	33
11	11
	1

2	156
2	78
3	39
13	13
	1

Highest common factor of $108,132,156=2 \times 2 \times 3=12$
4. As 31 and 53 are prime numbers, the smallest 4-digit number exactly divisible by 31 and 53 would be $31 \times 53=1643$.
5. We need to find the HCF of 108,162 and 270.

1	108
2	54
3	27
3	9
3	3
	1

2	162
3	81
3	27
3	9
3	3
	1

2	270
3	135
3	45
3	15
5	5
	1

HCF of 108,162 and $270=2 \times 3 \times 3 \times 3=54$
\therefore Each bus can carry 54 students.
Total students $=108+162+270$

$$
=540
$$

\therefore The number of buses required $=540 \div 54$

$$
=10
$$

6. As product of two numbers = product of their HCF and LCM
$\Rightarrow \quad 2073=24 \times$ LCM
or $\quad \mathrm{LCM}=20736 \div 24$

$$
=864
$$

Chapter Innings

1. (i) (b) 1
(ii) (a) 22
(iii) (b) 300
(iv) (c) 3
(v) (b) co-prime
2. We need to find the LCM of 21,27 and 35.

3	$21,27,35$
7	$7,9,35$
	$1,9,5$

LCM of $21,27,35=3 \times 7 \times 9 \times 5=945$
Required number $=947-3=942$
3. First person takes 3 mins 20 seconds $=200$ seconds

Second person takes 3 mins 40 seconds $=220$ seconds
Third person takes 4 mins $=240$ seconds
LCM of 200,220 and $240=2 \times 2 \times 2 \times 5 \times 6 \times 11 \times 5$

2	$200,220,240$
2	$100,110,120$
2	$50,55,60$
5	$25,55,30$
	$5,11,6$

$$
=13,200
$$

\therefore They will meet after 13200 seconds, i.e. 3 hours 40 minutes or at 03:40 PM.
4. As 220 is not divisible by 15
\therefore Two numbers can't have 15 as their HCF and 220 as their LCM.
5. We need to find the LCM of 10,15 and 18.

2	$10,15,18$
3	$5,15,9$
5	$5,5,3$
	$1,1,3$

LCM $=2 \times 3 \times 3 \times 5$

LCM of 10,15 and $18=90$
\therefore A minimum of 90 students are required to form such groups.
6. LCM of 150,125 and 84 will be

2	$150,125,84$
3	$75,125,42$
5	$25,125,14$
5	$5,25,14$
	$1,5,14$

LCM $=2 \times 3 \times 5 \times 5 \times 5 \times 14=10500$

The three frogs will again jump together after $10,500 \mathrm{~cm}$ or 105 m .
7. We need to find HCF of 240, 318 and 426.

2	240
2	120
2	60
2	30
3	15
5	5
	1

2	318
3	159
53	53
	1

2	426
3	213
71	71
	1

$$
\mathrm{HCF}=2 \times 3=6
$$

\therefore The greatest possible length of each piece $=6 \mathrm{~cm}$

Mental Maths

1. Two numbers with LCM 4 and sum 5 will be 1 and 4 .
2. (i) Factors of 9: 1, 3, 9

Factors of 15: 1, 3, 5, 15
Common factors: 1,3
(ii) Factors of $24: 1,2,3,4,6,8,12,24$

Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
Common factors: $1,2,3,4,6,12$.
(iii) Factors of $36: 1,2,3,4,6,9,12,18,36$

Factors of 63: 1, 3, 7, 9, 21, 63
Common factors: $1,3,9$.
3. (i)

2	18,24
3	9,12
	3,4

LCM of 18 and $24=2 \times 3 \times 3 \times 4=72$
(ii)

2	12,18
3	6,9
	2,3

(iii)

| 9,13 |
| :--- | :--- |\quad LCM of 9 and $13=9 \times 13=117$

4. $\mathrm{LCM}=36$

The two numbers should be factors of the LCM. Factors of 36 between 10 and 20 are: 12 and 18.
\therefore The two numbers are 12 and 18 .
5. The number lies between 15 and 20.17 and 19 are not exactly divisible by either 3 or 4.
$17 \div 3$ gives a remainder 2 .
$17 \div 4$ gives a remainder 1.
\therefore The number is 17 .

Googly

1. The single-digit natural number that has exactly three factors is 4 . It has three factors- 1 ,

2, 4.
2. 15 (as it has 3 and 5 in its tree)
3. 1

Real-life Connect

2	162		
3	81		
3	27		
3	9		
3	3		
		\quad	2
:---	\quad	2	
:---	\quad	2	
:---			

2	306
3	153
3	51

\therefore A maximum of 18 chocolates can be packed in 1 packet.

Unit Innings 1

1. Smallest 6-digit number: $1,00,000$

Predecessor: 99,999
2. Place value of 7 in $6,76,130=70,000$

Face value of 7 in $6,76,130=7$
Product $=7 \times 70,000=4,90,000$
3. (i) 97×53

$$
\approx 100 \times 53
$$

$$
=5300
$$

(ii) 103×97

$$
\begin{aligned}
& \approx 100 \times 100 \\
& =10,000
\end{aligned}
$$

(iii) $12,904+2888$

$$
\begin{aligned}
& \approx 13,000+3000 \\
& =16,000
\end{aligned}
$$

4. Cocoa required for one bar of chocolate $=15 \mathrm{~g}$
97.5 kg cocoa can be used in $\frac{97,500}{15}=6500 \mathrm{bars}$
5. $657 \rightarrow$ DCLVII
```
494 -> CDXCIV
```

6. (i) $88 \times 76+12 \times 76$

$$
\begin{aligned}
& =(88+12) \times 76 \\
& =100 \times 76 \\
& =7600
\end{aligned}
$$

(ii) $100 \times 499-99 \times 100$

$$
\begin{aligned}
& =100 \times(499-99) \\
& =100 \times 400=40,000
\end{aligned}
$$

7. (a) $51+52+53+\ldots+60=555$
(b) $121+122+123+\ldots+130=1255$
(c) $891+892+893+\ldots+900=855$
8. LCM of $2,3,4,56$ will be

2	$2,3,4,5,6$
3	$1,3,2,5,3$
	$1,1,2,5,1$

$$
\mathrm{LCM}=2 \times 2 \times 3 \times 5=60
$$

$\therefore 60$ lies between 59 and 61 which is a pair of twin primes.
9. When we divide 4135 by 37 , we get 28 as the remainder. Thus, the smallest number to be added to 4135 to make it exactly divisible by 37 will be $37-28=9$.
10. A number divisible by 9 will also be divisible by 3 .

The smallest four-digit number is 1000 . When we divide 1000 by 9 , we get 1 as the remainder. We should add $9-1=8$ to 1000 to make it divisible by 9 .

So, $1000+8=1008$ is the smallest four-digit number that is divisible by both 3 and 9 .
11. We need to first find the LCM of 14,28 and 91.

$$
\begin{array}{l|l}
2 & 14,28,91 \\
\hline 7 & 7,14,91 \\
\hline & 1,2,13
\end{array} \text { LCM }=2 \times 2 \times 7 \times 13=364
$$

\therefore The required number $=364+1$

$$
=365
$$

12. \quad Greatest 1 -digit number $=9$

LCM of 3 and $9=9$

3	3,9
	1,3

13. Smallest composite number $=4$; smallest 2-digit number $=10$

LCM of 4 and $10=20$

2	4,10
	2,5

14. 1 is the HCF of two consecutive odd numbers.
15. As they are co-primes, their LCM will be equal to their product, i.e. 117.
16. We need to find the HCF of 6 and 5
$\mathrm{HCF}=1$
\therefore Largest size of tiles $=1 \mathrm{~m}^{2}$
The number of tiles required $=6 \times 5 \mathrm{~m}^{2} \div 1 \mathrm{~m}^{2}$

$$
\begin{aligned}
& =30 \div 1 \\
& =30
\end{aligned}
$$

17. Length of $1^{\text {st }}$ rope $=6 \mathrm{~m} 30 \mathrm{~cm}=630 \mathrm{~cm}$

Length of $2^{\text {nd }}$ rope $=5 \mathrm{~m} 85 \mathrm{~cm}=585 \mathrm{~cm}$
Length of $3^{\text {rd }}$ rope $=3 \mathrm{~m} 60 \mathrm{~cm}=360 \mathrm{~cm}$
We need to find the HCF of 630, 585 and 360.

2	630			2	360	$\mathrm{HCF}=3 \times 3 \times 5=45$
2	630			2	180	
3	315	3	585			
3	105	3	195	2	90	
5	35	5	65	3	45	
7	7		13	3	15	
			13	5	5	
	1				1	

\therefore The greatest length possible of each piece is 45 cm .

Formative Assessment 1

1. Factors of $63: 1,3,7,9,21,63$

Prime factors of 63: 3, 7
Sum of prime factors of $63=3+7=10$
2. We need to find HCF of 56 and 77

$$
k-8=14
$$

or $\quad k=22$
3.

21397
$+\underline{42505}$

Rounding off, we get: 64,000
4. Batteries in each toy $=4$

$$
\text { No. of toys }=20
$$

Batteries needed $=4 \times 20=80$
Batteries in 1 packet $=16$
Packets required $=\frac{80}{16}=5$
5. Electronic devices beep after 30 minutes, 60 minutes, 90 minutes and 105 minutes, respectively.

We need to find the LCM of 30, 60, 90 and 105.

2	$30,60,90,105$
3	$15,30,45,105$
5	$5,10,15,35$
	$1,2,3,7$

$\mathrm{LCM}=2 \times 2 \times 3 \times 3 \times 5 \times 7=1260$
They will beep together again after 1260 minutes, i.e., 21 hours or at 9:00 A.M. the next day.
6. Sweets in each box $=228$

Boxes bought $=19$
Total sweets $=228 \times 19=4332$
Sweets distributed $=519$
Sweets left $=4332-519=3813$
7.
(i) LXXIV $\rightarrow 74$
(ii) CCCLIX $\rightarrow 359$
(iii) MCDXII $\rightarrow 1412$
(iv) MDCLVI $\rightarrow 1656$
(v) DCCXLVI $\rightarrow 746$
8.
(i) 99: XCIX
(ii) 213: CCXIII
(iii) 767: DCCLXVII
(iv) $588:$ DLXXXVIII
(v) 1759: MDCCLIX
9. Cloth produced in 7 weeks $=2,75,576 \mathrm{~m}$

Cloth produced in 1 day $=\frac{2,75,576}{7 \times 7} \mathrm{~m}=5624 \mathrm{~m}$
10. Salary of 1 employee per month $=` 5862$

Salary of 107 employees per month $=` 5862 \times 107$

$$
\begin{aligned}
& =` 5862 \times(100 \times 7) \\
& =` 5862 \times 100+` 5862 \times 7 \\
& =`(5,86,200+41,034) \\
& =` 6,27,234
\end{aligned}
$$

11. Petrol filled on first day $=40 \ell$

Petrol filled on second day $=45 \ell$
Cost of petrol $=` 54$ per ℓ
Total petrol $=85 \ell$
Total cost of petrol $=` 85 \times 54$

$$
=` 4590
$$

12. (a) $363+243+57$

$$
\begin{aligned}
& =363+(243+57) \quad \text { [Associative property] } \\
& =363+300 \\
& =663
\end{aligned}
$$

(b) $96 \times 73-94 \times 73$

$$
\begin{aligned}
& =(96-94) \times 73 \\
& =2 \times 73 \\
& =146
\end{aligned}
$$

(c) 996×16

$$
\begin{aligned}
& =(1000-4) \times 16 \\
& =1000 \times 16-4 \times 16 \\
& =16000-64 \\
& =15936
\end{aligned}
$$

13. Total amount $=` 16,27,000$

The number of 500 -rupee note $=\frac{16,27,000}{500}=3254$
14. $5684 \times 98=5684 \times(100-2)$

$$
\begin{aligned}
& =5684 \times 100-5684 \times 2 \\
& =5684-11368 \\
& =5,57,032
\end{aligned}
$$

$$
\begin{aligned}
5684 \times 89 & =5684 \times(90-1) \\
& =5684 \times 90-5684 \times 1
\end{aligned}
$$

$$
\begin{aligned}
& =511560-5684 \\
& =505876
\end{aligned}
$$

$$
\begin{aligned}
\text { Difference } & =557032-505876 \\
& =51156
\end{aligned}
$$

15. Population of first city $=3,68,509$

Population of second city $=48,57,329$
Population of third city $=30,95,864$

$$
\text { Total }=\underline{\overline{83,21,702}}
$$

Eighty-three lakh twenty-one thousand seven hundred two
16. We need to find the LCM of $28,32,40,56$.

2	$28,32,40,56$
2	$14,16,20,28$
2	$7,8,10,14$
7	$7,4,5,7$
	$1,4,5,1$

LCM $=2 \times 2 \times 2 \times 4 \times 5 \times 7=1120$
Required number $=1120+11=1131$
17. We need to find the LCM of 10,15 and 18 .

2	$10,15,18$
3	$5,15,9$
5	$5,5,3$
	$1,1,3$

LCM $=2 \times 3 \times 5 \times 5=150$
Required number $=157$
18. We need to find the HCF of 12 and 18 .

$\mathrm{HCF}=6$
\therefore Length of the longest rod $=6$
19. $L C M$ of 10,15 and $20=2 \times 2 \times 3 \times 5=60$

2	$10,15,20$
5	$5,15,10$
	$1,3,2$

\therefore The required number of toffees $=60+5=65$
20. We need to find the HCF of $(1360-10)$ and $(1600-25)$, that is 1350 and 1575

\therefore The required number is 225 .

Net Practice-Unit 2

2. (i) Perpendicular
(ii) parallel
3. Diameter $=2 \times$ Radius

$$
=2 \times 1.8 \mathrm{~cm}=3.6 \mathrm{~cm}
$$

4. Zero/None
5. (a) PQRS, quadrilateral
(b) PQ and RS
(c) Q

A
S
O
(b) $\angle \mathrm{AOD}$
(c) \angle
$\begin{array}{ll}\text { B } & \text { asure an angle. } \\ \text { O } & \text { There are } 360 \text { degrees in a complete angle. } \\ \text { D } & \end{array}$
7. I
n
f
i
n
i
t
e
8. (
a
)
A
o
9. E
q
u
i
1
a
t
e
r
a
1
t
r
i
a
n
g
1
e
10. P
r
o
t
r
a
c
t
o
r
i
m

